The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

Home Contact Subscribe f—

The Correct Way to Overload Functions ing¢Pgthony,

MARTIN May 31, 2021 | & #Python

Function overloading is a common programming pattern which seems to be reserved
to statically-typed, compiled languages. Yet there's an easy way to implement
it in Python with help of Multiple Dispatch or as it's called in Python multi-
methods.

overloading

First things first - you might be asking, how can we implement method overload-
ing in Python when we all know that it's not possible? Well, even though Python
is dynamically-typed language and therefore cannot have proper method overload-
ing as that requires the language to be able to discriminate between types at
compile-time, we can still implement it in a bit different way that is suitable
for dynamically-typed languages.

This approach is called Multiple Dispatch or multimethods, where the inter-
preter differentiates between multiple implementations of a function/method at
runtime based on dynamically determined types. To be more precise, the language
uses types of arguments passed to a function during its invocation to dynami-
cally choose which one of the multiple function implementations to use (or
dispatch).

Now you might be thinking: "Do we really need this though? If it can't be im-
plemented normally, maybe we shouldn't use it in Python..." Yea, valid point,
but there are good reasons to want to implement some form of function/method
overloading in Python. It's powerful tool that can make code more concise,
readable and minimise its complexity. Without multimethods though, the "obvious

way" to do this is using type inspection with :isinstance()i. This is very ugly,

brittle solution that is closed to extension and I would call it an anti-
pattern.

https://martinheinz.dev/blog/50 Page 1of 7

https://martinheinz.dev/tag/python/
https://martinheinz.dev/
https://martinheinz.dev/contact
https://martinheinz.dev/subscribe
https://martinheinz.dev/blog/49
https://martinheinz.dev/blog/51
https://martinheinz.dev/subscribe

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

Besides that, there already is method overloading in Python for operators and

methods like :len(): or inew(): using so-called dunder or magic methods (see docs

here) and we all use that quite often, so why not use proper overloading for
all the function, right?

So, now we know that we can kind-of implement overloading in Python, so how ex-
actly do we do that?

#Single Dispatch

Above we spoke about Multiple Dispatch, but Python doesn't support this out-of-
the box, or in other words Multiple Dispatch is not a feature of Python stan-
dard library. What is available to us however, is called Single Dispatch, so
let's begin with this simpler case first.

The only actual difference between multi and single dispatch is number of argu-
ments which we can overload. So, for this implementation in standard library
it's just one.

The function (and decorator) that provides this feature is <called

. singledispatch | and can be found in | functools: module.

This whole concept is best explained with some examples. There are many "acade-

mic" examples of overloading functions (geometric shapes, addition, subtrac-

tion...) that we've probably all seen already. Rather than going over that,

let's see some practical examples. So, here's first example for :singledispatch:

to format dates, times and datetimes:

https://martinheinz.dev/blog/50 Page 2 of 7

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/library/functools.html#functools.singledispatch

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

This function is decorated with :@singledispatchi and provides base implementa-

tion, which is used if no better options is available. Next, we define individ-

possible to differentiate between types, we have two options - we can use type
annotations - as demonstrated in first two cases or explicitly add the type to
decorator as with the last one from the example.

In some cases it might make sense to use same implementation for multiple types

- for example for number types such as iint: and :float: - for these situations

decorator stacking is allowed, meaning that you can 1list (stack) multiple

- @format.register(type) : lines to associate a function with all the valid types.

Besides ability to overload basic functions, | functools:; module contains also

. singledispatchmethod i that can be applied to methods of a class. Example of that

could be the following:

https://martinheinz.dev/blog/50 Page 3 of 7

https://docs.python.org/3/library/functools.html#functools.singledispatchmethod

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

Multiple Dispatch

Oftentimes Single Dispatch won't be sufficient and you might need the proper

Multiple Dispatch functionality. This is available from imultipledispatch i module

which can be found here and can be installed with | pip install multipledispatchi.

This module and it's decorator - :@dispatch:, behaves very similarly to the

' @singledispatch i in the standard library. Only actual difference is that it can

take multiple types as arguments:

https://martinheinz.dev/blog/50 Page 4 of 7

https://pypi.org/project/multipledispatch/

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

The above snippet shows how we can use :@dispatch: decorator to overload multi-

ple arguments, for example to implement concatenation of various types. As you

probably noticed, with imultipledispatch: library we didn't need to define and

register base function, rather we created multiple functions with same name. If

The previous examples shows proof-of-concept, but if we wanted to really imple-

ment such :concatenate: function, we would need to make it much more generic.

This can be solved with use of union types. In this specific example we could
change the first function as follows:

https://martinheinz.dev/blog/50 Page 5 of 7

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

or ituplei, while second one would be {str: or :inti. This is already much better

than the previous solution, but it can be further improved using abstract

types. Instead of listing all the possible sequences, we can use S

stract type (assuming that our implementation can handle it) which covers
things like :list, :tuple: or irange::

If you want to take this approach, then it's good to take a 1look at

: collections.abc i module and see which container data-type best suits your needs.
Mostly to make sure that your function will be able to handle all the types
that fall into the chosen container.

All this mixing and matching of argument types is convenient, but can also
cause ambiguities when choosing suitable function for some specific set of pa-

rameters. Fortunately, multipledispatchi provides iAmbiguityWarning: which 1is

raised if ambiguous behaviour is possible:

https://martinheinz.dev/blog/50 Page 6 of 7

The Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog 6/24/22, 8:32 PM

Closing Thoughts

In this article we went over a simple, yet powerful concept which I rarely see
being used in Python, which is a shame considering that it can greatly improve
code readability and get rid of anti-patters 1like type inspection wusing

‘isinstance() . Also, I hope you would agree that this approach to function over-

loading should be considered the "obvious way" and I hope that you will make
use of it when needed.

If you want to dive deeper into this topic and get your hands dirty you can im-
plement multimethods yourselves as shown in Guido's article - this can be a
good exercise to understand how multiple dispatch actually works.

Finally, I should also probably mention that this article omits examples of the
well-known operator overloading which I mentioned in the beginning as well as
some approaches for overloading constructors for example using factories. So,
in case that's what you're looking for, go check out these links/resources,

which give good overview on there topics.

Copyright © 2022 Martind¢Heidzevious » Next 3 Subscribe Home T|opcOntact Subscribe

https://martinheinz.dev/blog/50 Page 7 of 7

https://www.artima.com/weblogs/viewpost.jsp?thread=101605
https://docs.python.org/3/reference/datamodel.html#basic-customization
https://stackoverflow.com/a/141777
https://martinheinz.dev/blog/49
https://martinheinz.dev/blog/51
https://martinheinz.dev/subscribe
https://martinheinz.dev/
https://martinheinz.dev/contact
https://martinheinz.dev/subscribe

