
6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 1 of 7https://martinheinz.dev/blog/50

The Correct Way to Overload Functions in PythonThe Correct Way to Overload Functions in Python

MARTINMARTIN May 31, 2021 | ! #Python

Function overloading is a common programming pattern which seems to be reserved

to statically-typed, compiled languages. Yet there's an easy way to implement

it in Python with help of Multiple Dispatch or as it's called in Python multi‐
methods.

First things first - you might be asking, how can we implement method overload‐
ing in Python when we all know that it's not possible? Well, even though Python

is dynamically-typed language and therefore cannot have proper method overload‐
ing as that requires the language to be able to discriminate between types at

compile-time, we can still implement it in a bit different way that is suitable

for dynamically-typed languages.

This approach is called Multiple Dispatch or multimethods, where the inter‐
preter differentiates between multiple implementations of a function/method at

runtime based on dynamically determined types. To be more precise, the language

uses types of arguments passed to a function during its invocation to dynami‐
cally choose which one of the multiple function implementations to use (or

dispatch).

Now you might be thinking: "Do we really need this though? If it can't be im‐
plemented normally, maybe we shouldn't use it in Python..." Yea, valid point,
but there are good reasons to want to implement some form of function/method

overloading in Python. It's powerful tool that can make code more concise,

readable and minimise its complexity. Without multimethods though, the "obvious
way" to do this is using type inspection with isinstance() . This is very ugly,

brittle solution that is closed to extension and I would call it an anti-

pattern.

OverloadingOverloading##

"Home Contact Subscribe

$ % &

https://martinheinz.dev/tag/python/
https://martinheinz.dev/
https://martinheinz.dev/contact
https://martinheinz.dev/subscribe
https://martinheinz.dev/blog/49
https://martinheinz.dev/blog/51
https://martinheinz.dev/subscribe

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 2 of 7https://martinheinz.dev/blog/50

Besides that, there already is method overloading in Python for operators and

methods like len() or new() using so-called dunder or magic methods (see docs
here) and we all use that quite often, so why not use proper overloading for

all the function, right?

So, now we know that we can kind-of implement overloading in Python, so how ex‐
actly do we do that?

Above we spoke about Multiple Dispatch, but Python doesn't support this out-of-
the box, or in other words Multiple Dispatch is not a feature of Python stan‐
dard library. What is available to us however, is called Single Dispatch, so
let's begin with this simpler case first.

The only actual difference between multi and single dispatch is number of argu‐
ments which we can overload. So, for this implementation in standard library

it's just one.

The function (and decorator) that provides this feature is called

singledispatch and can be found in functools module.

This whole concept is best explained with some examples. There are many "acade‐
mic" examples of overloading functions (geometric shapes, addition, subtrac‐
tion...) that we've probably all seen already. Rather than going over that,

let's see some practical examples. So, here's first example for singledispatch

to format dates, times and datetimes:

from functools import singledispatch
from datetime import date, datetime, time

@singledispatch
def format(arg):
 return arg

@format.register
def _(arg: date):
 return f"{arg.day}-{arg.month}-{arg.year}"

Single DispatchSingle Dispatch##

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/library/functools.html#functools.singledispatch

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 3 of 7https://martinheinz.dev/blog/50

@format.register
def _(arg: datetime):
 return f"{arg.day}-{arg.month}-{arg.year} {arg.hour}:{arg.minute}:{arg.second}"

@format.register(time)
def _(arg):
 return f"{arg.hour}:{arg.minute}:{arg.second}"

print(format("today"))
today
print(format(date(2021, 5, 26)))
26-5-2021
print(format(datetime(2021, 5, 26, 17, 25, 10)))
26-5-2021 17:25:10
print(format(time(19, 22, 15)))
19:22:15

We begin by defining the base format function that is going to be overloaded.

This function is decorated with @singledispatch and provides base implementa‐
tion, which is used if no better options is available. Next, we define individ‐
ual functions for each type that we want to overload - in this case date ,

datetime and time - each of these have name _ (underscore) because they will

be called (dispatched) through the format method anyway, so no need to give

them useful names. Each of them is also decorated with @format.register which

attaches them to the previously mentioned format function. Then, to make it

possible to differentiate between types, we have two options - we can use type

annotations - as demonstrated in first two cases or explicitly add the type to

decorator as with the last one from the example.

In some cases it might make sense to use same implementation for multiple types

- for example for number types such as int and float - for these situations

decorator stacking is allowed, meaning that you can list (stack) multiple

@format.register(type) lines to associate a function with all the valid types.

Besides ability to overload basic functions, functools module contains also

singledispatchmethod that can be applied to methods of a class. Example of that

could be the following:

https://docs.python.org/3/library/functools.html#functools.singledispatchmethod

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 4 of 7https://martinheinz.dev/blog/50

from functools import singledispatchmethod
from datetime import date, time

class Formatter:
 @singledispatchmethod
 def format(self, arg):
 raise NotImplementedError(f"Cannot format value of type {type(arg)}")

 @format.register
 def _(self, arg: date):
 return f"{arg.day}-{arg.month}-{arg.year}"

 @format.register
 def _(self, arg: time):
 return f"{arg.hour}:{arg.minute}:{arg.second}"

f = Formatter()
print(f.format(date(2021, 5, 26)))
26-5-2021
print(f.format(time(19, 22, 15)))
19:22:15

Oftentimes Single Dispatch won't be sufficient and you might need the proper
Multiple Dispatch functionality. This is available from multipledispatch module

which can be found here and can be installed with pip install multipledispatch .

This module and it's decorator - @dispatch , behaves very similarly to the

@singledispatch in the standard library. Only actual difference is that it can

take multiple types as arguments:

from multipledispatch import dispatch

@dispatch(list, str)

Multiple DispatchMultiple Dispatch##

https://pypi.org/project/multipledispatch/

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 5 of 7https://martinheinz.dev/blog/50

def concatenate(a, b):
 a.append(b)
 return a

@dispatch(str, str)
def concatenate(a, b):
 return a + b

@dispatch(str, int)
def concatenate(a, b):
 return a + str(b)

print(concatenate(["a", "b"], "c"))
['a', 'b', 'c']
print(concatenate("Hello", "World"))
HelloWorld
print(concatenate("a", 1))
a1

The above snippet shows how we can use @dispatch decorator to overload multi‐
ple arguments, for example to implement concatenation of various types. As you

probably noticed, with multipledispatch library we didn't need to define and

register base function, rather we created multiple functions with same name. If

we wanted to provide base implementation, we could use @dispatch(object,

object) which would catch any non-specific argument types.

The previous examples shows proof-of-concept, but if we wanted to really imple‐
ment such concatenate function, we would need to make it much more generic.

This can be solved with use of union types. In this specific example we could

change the first function as follows:

@dispatch((list, tuple), (str, int))
def concatenate(a, b):
 return list(a) + [b]

print(concatenate(["a", "b"], "c"))

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 6 of 7https://martinheinz.dev/blog/50

['a', 'b', 'c']
print(concatenate(("a", "b"), 1))
['a', 'b', 1]

This would make it so that first argument of the function could be any of list

or tuple , while second one would be str or int . This is already much better

than the previous solution, but it can be further improved using abstract

types. Instead of listing all the possible sequences, we can use Sequence ab‐
stract type (assuming that our implementation can handle it) which covers

things like list , tuple or range :

from collections.abc import Sequence

@dispatch(Sequence, (str, int))
def concatenate(a, b):
 return list(a) + [b]

If you want to take this approach, then it's good to take a look at

collections.abc module and see which container data-type best suits your needs.

Mostly to make sure that your function will be able to handle all the types

that fall into the chosen container.

All this mixing and matching of argument types is convenient, but can also

cause ambiguities when choosing suitable function for some specific set of pa‐
rameters. Fortunately, multipledispatch provides AmbiguityWarning which is

raised if ambiguous behaviour is possible:

test_multipledispatch:10: AmbiguityWarning:
Ambiguities exist in dispatched function some_func

The following signatures may result in ambiguous behavior:
 [str, object], [object, str]

Consider making the following additions:

@dispatch(str, str)

6/24/22, 8:32 PMThe Correct Way to Overload Functions in Python | Martin Heinz | Personal Website & Blog

Page 7 of 7https://martinheinz.dev/blog/50

def some_func(...)

In this article we went over a simple, yet powerful concept which I rarely see

being used in Python, which is a shame considering that it can greatly improve

code readability and get rid of anti-patters like type inspection using

isinstance() . Also, I hope you would agree that this approach to function over‐
loading should be considered the "obvious way" and I hope that you will make
use of it when needed.

If you want to dive deeper into this topic and get your hands dirty you can im‐
plement multimethods yourselves as shown in Guido's article - this can be a

good exercise to understand how multiple dispatch actually works.

Finally, I should also probably mention that this article omits examples of the

well-known operator overloading which I mentioned in the beginning as well as

some approaches for overloading constructors for example using factories. So,

in case that's what you're looking for, go check out these links/resources,

which give good overview on there topics.

Closing ThoughtsClosing Thoughts##

$ & %Previous Next Subscribe TopCopyright © 2022 Martin Heinz Home Contact Subscribe

https://www.artima.com/weblogs/viewpost.jsp?thread=101605
https://docs.python.org/3/reference/datamodel.html#basic-customization
https://stackoverflow.com/a/141777
https://martinheinz.dev/blog/49
https://martinheinz.dev/blog/51
https://martinheinz.dev/subscribe
https://martinheinz.dev/
https://martinheinz.dev/contact
https://martinheinz.dev/subscribe

